Introduction

Multi-omics Data:

+ Public multi-omics datasets such as The
Cancer Genome Atlas (TCGA) have col-
lected comprehensive profiles of several
cancer types for multiple molecular layers.
The ovarian cancer data from the TCGA
are selected to conduct the experiments.

following figure.
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* Motivation: Diagnose, treat, and cure cancers through the availability of massive biological omics data presented to biologists and data scientists.

* Alm: Obtain a deep understanding of complex molecular mechanisms that lead to diseases via multi-omics integration.

+ The search space should be modeled as a suitable
oraph for a multi-agent algorithm before starting
the feature selection procedure, illustrated in the

* Challenge: Mitigate the curse of dimensionality phenomenon which is the consequence of the multi-omics integration task.
* Solution: Utilize a feature selection technique to simplify the integration process possessed by high dimensionality datasets.
* Previous efforts: Apply feature selection independently to each omics dataset as a preprocessing step which neglects inter-omics interactions.

+* Hypothesis: Can a joint feature selection for multi-omics data help improve the classification accuracy?
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Multi-Agent Feature Selection Architecture:

« This study aims to design a multi-agent architec- * Below 1s the proposed multi-agent feature

ture for multi-view (1.
lection to consider different omics data together.

e. multi-omics) feature se-  selection algorithm.

Input

D =< (X' X2 .., X"),y >: multi-view dataset.

Nr: maximum number of iterations.

N 4: number of agents placed in each view.
Output

D" =< X',y >: final single dataset X', d’ x n.

Omics Type #Samples I: Calculate corr(fF, fF),Vk =1,2,...,v.
: 2: Calculate rel(fF),Vk = 1,2, ..., v.
DNA methylation 27,578 616 Py P, 3 7F(0) « e, Vb =1,2,...,v. > Initialize pheromone
) . - Views| 11 ~ Corr(ftf}) 13 View, | 1§, —~ Corr(f? f2) 1% 4: pr %,Vk =12,...,v. > Initialize probability
Gene-level copy number variation 24,776 579 @ ----------- @ @ ------------- @ s for t — 1 to Ny do
Gene expression RNA-se 20,530 308 S B A e N B N N 6: fork=1tovdo
P 1 s f‘)g C B2 Corr(f ) ™. c L 7: Put N agents on a randomly chosen node.
@ @ 8: end for
~* To ensure the robustness of computation, S e , . for k=1t vdo
\ ! : for a =1to N4 do
data have been preprocessed as follows: \ v B ! Form new feature subset

| J— , ' : 1 /! ; Evaluate the generated subset
' “ Corr(f* f;) ““Cf)rr(f13'f2—3) ,’ end for

ormalize

\ Original values to
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end for
Select the current-best solution at ¢-th iteration.
Update the pheromone values
; Update probability distribution
18: end for
19: Choose the global-best solution found.
20: Construct D’ based on the global-best solution.
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Results

. vised feature selection method 1s evaluated in comparison to the mRMR-
mv [1], which 1s a supervised multi-view feature selection method.
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+ The performance of the proposed method, MAgentOmics, as an unsuper-

Conclusion

+ Tackled the high-dimensionality challenge of integrative multi-omics
analysis via a multi-agent system.

+ Assessed the relative importance of each view in the feature selec-
tion process.

+ Demonstrated the MAgentOmics method outperforms the mRMR-
mv supervised feature selection method.
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